Integration

Answer all the questions below and press submit to see how many you got right.

id: 18907

Which of the following are true for two functions $f$ and $g?$

  • $\int\limits_{0}^{11}f(x)\cdot g(x)dx=\int\limits_{0}^{11}f(x)dx \cdot \int\limits_{0}^{11}g(x)dx$
    $\int\limits_{0}^{11}f(x)-g(x)dx=\int\limits_{0}^{11}f(x)dx-\int\limits_{0}^{11}g(x)dx$
    $\int\limits_{0}^{11}f(x)+g(x)dx=\int\limits_{0}^{11}f(x)dx+\int\limits_{0}^{11}g(x)dx$
    $\int\limits_{0}^{11}\frac{f(x)}{g(x)}dx=\frac{\int\limits_{0}^{11}f(x)dx}{\int\limits_{0}^{11}g(x)dx}$
id: 18947

Which of the following are true for a function $f?$

  • $\int\limits_{0}^{21} f(x)dx-\int\limits_{0}^{14} f(x)dx=\int\limits_{0}^{1}(21-14)f(x)dx$
    $\int\limits_{0}^{14} f(x)dx+\int\limits_{14}^{21} f(x)dx=\int\limits_{0}^{21}f(x)dx$
    $\int\limits_{0}^{21} f(x)dx-\int\limits_{0}^{14} f(x)dx=\int\limits_{14}^{21}f(x)dx$
    $\int\limits_{0}^{14} f(x)dx+\int\limits_{14}^{21} f(x)dx=21\int\limits_{0}^{14}f(x)dx$
id: 18983

$$\int\limits_{0}^{14} x dx=\lim_\limits{n\to\infty} \frac{14}{n}\sum\limits_{k=1}^{n}\frac{14\cdot k}{n}=$$ $$=\frac{14\cdot k}{n}\lim_\limits{n\to\infty} \frac{14^2}{n^2}\sum\limits_{k=1}^{n} k=$$ $$=\lim_\limits{n\to\infty} \frac{14^2}{n^2}\frac{n\cdot(n+1)}{2}=?$$